CoLoRMap: Correcting Long Reads by Mapping short reads
نویسندگان
چکیده
MOTIVATION Second generation sequencing technologies paved the way to an exceptional increase in the number of sequenced genomes, both prokaryotic and eukaryotic. However, short reads are difficult to assemble and often lead to highly fragmented assemblies. The recent developments in long reads sequencing methods offer a promising way to address this issue. However, so far long reads are characterized by a high error rate, and assembling from long reads require a high depth of coverage. This motivates the development of hybrid approaches that leverage the high quality of short reads to correct errors in long reads. RESULTS We introduce CoLoRMap, a hybrid method for correcting noisy long reads, such as the ones produced by PacBio sequencing technology, using high-quality Illumina paired-end reads mapped onto the long reads. Our algorithm is based on two novel ideas: using a classical shortest path algorithm to find a sequence of overlapping short reads that minimizes the edit score to a long read and extending corrected regions by local assembly of unmapped mates of mapped short reads. Our results on bacterial, fungal and insect data sets show that CoLoRMap compares well with existing hybrid correction methods. AVAILABILITY AND IMPLEMENTATION The source code of CoLoRMap is freely available for non-commercial use at https://github.com/sfu-compbio/colormap CONTACT [email protected] or [email protected] SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
منابع مشابه
LoRDEC: accurate and efficient long read error correction
MOTIVATION PacBio single molecule real-time sequencing is a third-generation sequencing technique producing long reads, with comparatively lower throughput and higher error rate. Errors include numerous indels and complicate downstream analysis like mapping or de novo assembly. A hybrid strategy that takes advantage of the high accuracy of second-generation short reads has been proposed for cor...
متن کاملAccurate Long Read Mapping using Enhanced Suffix Arrays
With the rise of high throughput sequencing, new programs have been developed for dealing with the alignment of a huge amount of short read data to reference genomes. Recent developments in sequencing technology allow longer reads, but the mappers for short reads are not suited for reads of several hundreds of base pairs. We propose an algorithm for mapping longer reads, which is based on chain...
متن کاملSAP—A Sequence Mapping and Analyzing Program for Long Sequence Reads Alignment and Accurate Variants Discovery
The third-generation of sequencing technologies produces sequence reads of 1000 bp or more that may contain high polymorphism information. However, most currently available sequence analysis tools are developed specifically for analyzing short sequence reads. While the traditional Smith-Waterman (SW) algorithm can be used to map long sequence reads, its naive implementation is computationally i...
متن کاملMapping Accuracy of Short Reads from Massively Parallel Sequencing and the Implications for Quantitative Expression Profiling
BACKGROUND Massively parallel sequencing offers an enormous potential for expression profiling, in particular for interspecific comparisons. Currently, different platforms for massively parallel sequencing are available, which differ in read length and sequencing costs. The 454-technology offers the highest read length. The other sequencing technologies are more cost effective, on the expense o...
متن کاملAnatomy of a hash-based long read sequence mapping algorithm for next generation DNA sequencing
MOTIVATION Recently, a number of programs have been proposed for mapping short reads to a reference genome. Many of them are heavily optimized for short-read mapping and hence are very efficient for shorter queries, but that makes them inefficient or not applicable for reads longer than 200 bp. However, many sequencers are already generating longer reads and more are expected to follow. For lon...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Bioinformatics
دوره 32 17 شماره
صفحات -
تاریخ انتشار 2016